top of page

[2023] Energy absorption of a bio-inspired cylindrical sandwich structure

San Ha, N., Lee, T.U., Ma, J., Li, J. and Xie, Y.M., 2023. Thin-Walled Structures, p.111378. [Link]

This research investigates the energy absorption capability of a new bio-inspired cylindrical sandwich structure (BCSS). The sandwich core of the BCSS is designed to mimic the skeletal system of deep-sea glass sponge, which has a square lattice architecture reinforced by diagonal bracings. In this study, energy absorption characteristics are numerically evaluated, with results compared to those of conventional cylindrical sandwich structures with typical lattice and foam cores. It is found that the BCSS has significantly higher energy absorption capacity. In detail, the specific energy absorption of the BCSS is 31.2 %, 18.1 % and 24.4 % higher than those of conventional cylindrical sandwich structures with the kagome, square and foam cores, respectively. Furthermore, a parametric study is performed which reveals that the cell number and the wall thickness of both the core and the skins are key factors determining the energy absorption capacity of the BCSS. Finally, a theoretical derivation is developed to conveniently predict the mean crushing force of the BCSS. This research sheds light on using biomimetic approaches to design an advanced composite structure with high energy absorption efficiency.


bottom of page